Global Oilfield Solutions

Basolon® GL 40 and Basolon® IN 40: H₂S scavengers for the oilfield application
Hydrogen sulfide (H_2S) occurs naturally and is frequently encountered in the oil and gas industry. Natural gas or crude containing hydrogen sulfide (H_2S) is commonly referred to as sour gas and/or sour crude. H_2S is soluble in both water and hydrocarbon. Operators are faced with several major issues when producing gas containing H_2S and these include safety, environmental and regulatory concerns and operational issues. A variety of solutions is available for the removal of H_2S from gas and crude oil stream with one of the most common use of liquid H_2S scavenger. For many operators, this is the preferred option of scavenging H_2S.

H_2S SCAVENGERS

<table>
<thead>
<tr>
<th>General information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
</tr>
<tr>
<td>Basolon® GL 40</td>
</tr>
<tr>
<td>Basolon® IN 40</td>
</tr>
</tbody>
</table>
Advantages of Basolon® GL 40 and Basolon® IN 40

- Basolon® GL 40 and Basolon® IN 40 can be more efficient than the alternative triazine products
 - Example: 13 liters of Basolon® GL 40 and Basolon® IN 40/kg H₂S versus 15–17 liters of triazine scavenger/kg H₂S has been observed in field application
- No precipitation of calcium scale in Basolon® GL 40 and Basolon® IN 40/brine solutions
 - Case studies #2 revealed no scaling produced from Basolon® GL 40 and Basolon® IN 40 treatment
- Basolon® GL 40 and Basolon® IN 40 has very high temperature stability with no decomposition up to 150°C
- Basolon® GL 40 and Basolon® IN 40 + H₂S reaction products are 100% water soluble and do not precipitate by oversaturation
- Basolon® GL 40 is non-amine based

ADDITIONAL SECONDARY FEATURES

- No foaming is observed with Basolon® GL 40 and Basolon® IN 40
- No emulsion is observed with Basolon® GL 40 and Basolon® IN 40
- Carbon Steel CS 1018: minimal corrosion (0.01 mmpy) observed with Basolon® IN 40
- Water miscible solvents such as MEG/MeOH are compatible
- Basolon® GL 40 and Basolon® IN 40 materials compatibility (NACE standard TM-01-69)
 - Stainless Steel 304 and 316: no corrosion observed
 - HD PE and PP, Hytrel 6356, PTFE, Viton, EPDM: no significant changes
 - Nylon 11, Nitrile Buma N, HNBr: satisfactory

SUGGESTED APPLICATION

- 3-phase production streams
- 2-phase gas streams
- Downhole
- Subsea
- Wellhead
- Bulk storage tanks
- Produced water streams
Scavenging H₂S is considered a two step process. The hydrogen sulfide must first be dissolved into the fluid and then once dissolved, it must quickly react with the scavenger molecules. The rate of removal is governed by the rate at which the H₂S dissolves into the scavenger-containing phase (mass transfer rate) and the rate that the scavenger reacts with H₂S. For this reason, contact time is the major consideration when designing an H₂S scavenger program.

Scavenging rate/efficiency is governed by the following parameters:

- Temperature
- Flow regimes
- Contact time
- Equipment design

A suggested treatment is 7 to 12 ppm of Basolon® GL 40 or Basolon® IN 40 per ppm H₂S per bbl of fluid. It is highly recommended to use an atomizing injection quill for all continuous treatments.

It is a requirement for products used in the production of crude oil or natural gas to not increase the corrosion of the rate of fluids. It has been observed that Basolon® GL 40 can cause corrosion of carbon steel. Corrosion in fluid streams containing 0.1–1% (i.e. 1,000–10,000 pm) of Basolon® GL 40 can easily be mitigated by the application of standard production corrosion inhibitors. These standard corrosion inhibitors types include quaternary ammonium compounds, alkylalkylenediamine and fatty acid salts and derivatives.

For concentration higher than 1% Basolon® GL 40 in production streams or in application that require concentrated forms of Basolon® GL 40, BASF has developed Basolon® IN 40.

LAB RESULTS

<table>
<thead>
<tr>
<th>TEST METHOD</th>
<th>Basolon® IN 40 (40 %) for 14 days at 60°C with mild steel 1018 NACE standard TM-01-69</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET</td>
<td>0.1 mmpy</td>
</tr>
<tr>
<td>RESULTS</td>
<td>Basolon® IN 40 reached the target of 0.1 mmpy with no pitting observed and was stable at 4°C, 25°C and 50°C for 30 days.</td>
</tr>
</tbody>
</table>
Basolon® GL 40 case studies

CASE STUDY #1 ONSHORE

CHALLENGES
- The primary goal was to reduce levels of H$_2$S primarily for HSE and cost efficiency
- H$_2$S scavenger that could be applied to produced fluids prior to depressurization and separation either at wellhead or downhole
- Storage Tank H$_2$S levels 3,600 ppm (Acceptable level < 1,000 ppm)
- Fuel Gas H$_2$S levels 2,800 ppm (Acceptable level < 500 ppm)

RESULTS
- 86% reduction of H$_2$S levels in storage tank was achieved
- 64% reduction in fuel gas whilst injecting Basolon® GL 40 (40%) at 4,500 ppm
- During the field trials Basolon® GL 40 (40%) had no adverse effects on:
 - Produced water pH and bicarbonate levels therefore did not affect the carbonate scaling potential
 - No issues in oil-in-water quality or fluid separation were observed
 - Increase in production of approx. 4% crude was observed

CASE STUDY #2 OFFSHORE

CHALLENGES
- In the North Sea sector, H$_2$S levels in gas are typically maintained at the required specification by injecting triazine based H$_2$S scavenger's topside into the gas stream.
- Triazine scavenger residuals and reaction by-products that are returned from the gas system into produced water can cause severe scaling problems.
- With triazine, calcium carbonate scale was found to build up within equipment to an unworkable level within 2 weeks and production had to be halted for the application of a dissolver.

RESULTS
- The service provider formulated Basolon® GL 40 and recommended it for field trial
- Basolon® GL 40 was found to reduce topside H$_2$S levels by 83% from 32 ppm to 4 ppm with injection at 850 ppm based on total fluids
- Due to the nature of Basolon® GL 40, the scaling tendency of the produced waters was reduced and no build up/restriction was observed
- Basolon® GL 40 treatment eliminated the requirement of the regular process shut-downs to carry out scale dissolver treatments

CASE STUDY #3 OFFSHORE

- Basolon® GL 40 has been used since 2006 to control the H$_2$S from a field which is tied back to a highly sensitive separation process 14 km away
- The product is supplied subsea directly into the wellheads providing excellent reaction temperature for Basolon® GL 40
- The long tie back provides excellent reaction environment for Basolon® GL 40 with long contact time and high turbulence during the transit time to the installation

- It efficiently reduces H$_2$S at an average of 88% to 4 ppm, which is well below the 9 ppm gas lift riser specification for this field
- Basolon® GL 40 has been found to have no detrimental effect on the oil-in-water or separation of the process
The descriptions, designs, data and information contained herein are presented in good faith, and are based on BASF’s current knowledge and experience. They are provided for guidance only, and do not constitute the agreed contractual quality of the product or a part of BASF’s terms and conditions of sale. Because many factors may affect processing or application/use of the product, BASF recommends that the reader carry out its own investigations and tests to determine the suitability of a product for its particular purpose prior to use. It is the responsibility of the recipient of product to ensure that any proprietary rights and existing laws and legislation are observed. No warranties of any kind, either express or implied, including, but not limited to, warranties of merchantability or fitness for a particular purpose, are made regarding products described or designs, data or information set forth herein, or that the products, descriptions, designs, data or information may be used without infringing the intellectual property rights of others. Any descriptions, designs, data and information given in this publication may change without prior information. The descriptions, designs, data, and information furnished by BASF hereunder are given gratis and BASF assumes no obligation or liability for the descriptions, designs, data or information given or results obtained, all such being given and accepted at the reader’s risk. (09/2017)

© = registered trademark of BASF SE